1§t Dialogic.

Dialogic® Brooktrout® Fax Products SDK

Developer Guide

March 2020 931-132-12

www.dialogic.com

Copyright and Legal Notice

Copyright © 1998-2020 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in
part without permission in writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do
not represent a commitment on the part of Dialogic Corporation and its affiliates or subsidiaries ("Dialogic"). Reasonable
effort is made to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant
the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that may be
contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN
YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see
http://www.dialogic.com/company/terms-of-use.aspx for more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only
in specific countries, and thus may not function properly in other countries. You are responsible for ensuring that your
use of such products occurs only in the countries where such use is suitable. For information on specific products, contact
Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document,
in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more patents or other
intellectual property rights owned by third parties. Dialogic does not provide any intellectual property licenses with the
sale of Dialogic products other than a license to use such product in accordance with intellectual property owned or
validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with Dialogic. More
detailed information about such intellectual property is available from Dialogic's legal department at 3300 Boulevard de
la Cote-Vertu, Suite 112, Montreal, Quebec, Canada H4R 1P8. Dialogic encourages all users of its products to
procure all necessary intellectual property licenses required to implement any concepts or applications
and does not condone or encourage any intellectual property infringement and disclaims any responsibility
related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different
national license requirements.

Dialogic, Dialogic Pro, Brooktrout, BorderNet, PowerMedia, PowerVille, PowerNova, ControlSwitch, I-Gate, Veraz,
Cantata, TruFax, and NMS Communications, among others as well as related logos, are either registered trademarks or
trademarks of Dialogic Corporation and its affiliates or subsidiaries. Dialogic's trademarks may be used publicly only
with permission from Dialogic. Such permission may only be granted by Dialogic's legal department at 3300 Boulevard
de la Céte-Vertu, Suite 112, Montreal, Quebec, Canada H4R 1P8. Any authorized use of Dialogic's trademarks will be
subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's
trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

page 2

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com
http://www.dialogic.com

Hardware Limited Warranty

Refer to the following Dialogic web site for information on hardware warranty information, which applies unless
different terms have been agreed to in a signed agreement between yourself and Dialogic Corporation or its subsidiaries.
The listed hardware warranty periods and terms are subject to change without notice. For purchases not made directly
from Dialogic please contact your direct vendor in connection with the warranty period and terms that they offer.

http://www.dialogic.com/warranties

page 3

http://www.dialogic.com/warranties

Contents

Preface 14
INtrOdUCHION . . .o e 14
Related DOCUMENES e e e e e e e 15
Operating System SUPPOItttt e 15
Manual CoNVENLIONSt e e e 15
Updated Terminologyt e e e 17

Chapter 1 — Introduction to the Dialogic® Brooktrout®

Bfv APl . .. 20
This chapter describes the Dialogic® Brooktrout® Bfv APl and its
capabilities.
Bfv APl and Associated Libraries 21
The Bfv APL FUNCHONS . ..o e e e 24
Administration, Management, and Configuration 25
Administration and Initialization Functions and Macros 25
Firmware Functions and Macrost e 29
Configuration FUNCLIONSo e 29
Module Status and Monitoring Functions 31
Debugging, Error Handling, and Return Values 31
Miscellaneous Functions and Macrost 33
Call Control 34
Bfv Call Control e 34

March 2020

SN

Contents

BSMI-Level Call Control 34

Media ProCessingo e 36

Signal Generation and Tone Detectionttt 36

Voice Record and Play 37

FaxX FUNCHIONS e e e e 37

File Format Manipulation Functions 39

The Infopkt Stream 44

Fax Infopkt Parameters e e 50

Chapter 2 — Developing Applications Using the Bfv API. 54

This chapter describes how to develop applications with the Brooktrout
Fax Software.

Developing a Voice Application 55
Recording and Playing VoICeo 55
Recording VoICE 56

Playing Back the Voice Message i 57

Using Prompt Files 57
Using the mkprompt Utility 58
Creatinga New Prompt File e e e e 58
Updating an Existing Prompt File 59
Developing a Fax Application 59
Sending and Receiving a FaX 59
Sending a Fax from One Channelto Another 60
Sending a Fax to a Channel from an External Fax Machine 61

Using Bfv APl Fax FUNCLIONSo e e 62
Using High- and Low-Level Functions 62

Sending a Fax Using Function Calls for Noninfopkt-Formatted Raw G3 Files 68
Receiving a Fax Using Function Calls for Noninfopkt-Formatted Raw G3 Files ... 72

Sending a Fax Using Calls for TIFF-F Files 74
Receiving a Fax Using Calls for TIFF-F Files 75
Receiving and Storing a Fax in MMR or MR Format 77
Accessing an Infopkt Stream from an Application 82
Sending a TIFF-F Fax File Within an Infopkt Stream 83
Combining Data on a Single Page Using TIFF-F Fax Files 84
Accessing a TIFF-F File from an Application 86

March 2020 5

Contents

Determining Fax Status Information from an Application 88

Chapter 3—Debuggingo 90
This chapter describes how to use the debugging tools.

Bfv API Debug Mode 91

BivDataF SK 91

BfvLINEDUMPSIIUCIUNE 91

DUMP HiStOrY . oo 92

INnvoking DUMP HiStOryo 93

Interpreting the OULpULo e 95

Status Header Line 96

Event Logging Lines e 96

Event Logging Line Format 96

Parsed Command INformation 97

Utility Programs for Debuggingot 99

DIVer 99

CONNIISt L . 99

fEAtUIE -0 . . oo e e 99

MOAINfO . . .o 99

ShoparaM .. 99

BSMI DebUgQINg . ..o 100

BSMIMessage TraCing oottt e e e e 100

RUNNING @ Layer 2 TraCe . . .ot i oot e e et e e e 100

Understanding Trace Hexadecimal Strings i 103

VTTY Tracing Feature i e e e e e e 109

VTTY Console Commandst 110

VTTY Tracer GUI ... e e e 111

Call TraCEr . .t 116

Command SYNAXot 117

ATQUIMENES . . o e 117

Configuration File Format e 118

Chapter 4 — Sample Applications and Utilities 120

This chapter describes the sample applications and utilities that come as
part of the Dialogic® Brooktrout® SDK.

March 2020 6

Contents

boardmon 121
0] LY/ 122
CONNIISt . . e e 123
SN .o 124
JEACT .. 125
debug _Control 127
HECOME ... 128
OiaX e e e 129
IV 129
AIaX .. e e 130
AStriD . 131
BCCIIVOICE . . 132
7= 0 G 133
fAXNl L 134
faXIl . e 135
XMl . . 137
L2 S 138
faXPMl . . 138
L(= L 1= 139
fIEM 141
firmload 142
fONt L L e 143
] (] 144
Y 145
KA CX o vt e 145
MKINfOPK . . o 146
MK Ot L L 148
MKEET L 148
MOAINfO . .. e 149
1= Y/ o 150
10 150
Shoparam 151
101 15T 151
LISAVE . . 152
A e 153
UMD . 153

March 2020 7

Contents

OIS . 154
TrANS O . . e 154
transferll 156
OMDONE . .. 158
L30T o P 159
VOICE o ottt e e e e e 160
VOICEIAW .« . v v e ettt e e e e e e e e e e e e e e e e 162
WAV oottt e e e e e 163
Compiling Sample Applications Using Microsoft Developer Studio Project Files 165
Using BrooktroUut Files e e 166
Compiling Sample Applications Using Makefiles 167
Combining the Sample Applications i 168
Compatibility for Compiling 168
Chapter 5—-Transferring Calls 169

This chapter describes transferring calls using the Bfv API-level and
BSMI-level call control functionality.

Making Call Transfers Using Bfv e 170
Making Hookflash Transfers e 173
Using Bfv Applications 173
Using BSMI Applicationst 174
Making Two B-Channel Transfers i 175
Making Call Transfers Using QSIG e 177
ISDN QSIG . oo 177
Supplementary Services SUPPOrt e 177
Making Call Transfers Using Active Redirection (Japan)ccoiuvee. .. 181
Making Explicit Call Transfers (ECT) With ELISDNand BRI 183
Making Two-Channel Call Transfers (Tromboning) 185
Setting up the Two-Channel Call Transfer 186
Connecting RESOUICES oottt e e e 186
Actions During a Two-Channel Call Transfer 189
Performing Echo Cancellation 189

Playing Back Voice Recordingst 192
Terminating the Two-Channel Call Transfer 194
DisScoNNecting RESOUICESo it e e e 195

March 2020 8

Contents

Transferring Calls Using Release Link Trunk Transfer 197

Using Bfv Applications e 197

Using BSMI Applications e 198

Call Control Sequence Diagramsttt e 199

Non-RLT Call Transfer e 199

RLT Call Transfer e e 200

Sample Application 202

Placing Calls on Hold Using BSMI e e e 205
Chapter 6 — Managing Fax and Voice over IP Sessions 207

This chapter describes how to develop applications that use the internet
for fax and voice media.

Managing Calls Using IP Telephony e 208
Adding IP Call Control usingthe Bfv APl 209
Outgoing IP Calls 210
Incoming IP Calls 211
Understanding SIP Functionality i, 212
Using a SIP Proxy Server e 212
Verifying Dialed Stringso e 212
Sample INVITE ReqUESEo e 215

Call Progress Valueso 223

SIP OPtONS . .. 223
Understanding H.323 Functionality i 224
Using H.323 AddreSS FOImMSottt e e e e e 225
Failover Based on Telephony Cause Codest 228
OV IV W . .ot 228
Common Failures e 228
Failover SCeNarios 229
Known Failures From Various Gatewaysc.iiiiinnnnnennnnnnn. 230
H.323 and SIP 230

SIP 10 Q.931 CONVEISION . .o i ittt e e e 233
Processing Media Using the T.38 Protocol 235
Sending and Receiving Faxest 238
Configuring T.38, RTP and IP Call Control Activities 239
Troubleshooting 240

March 2020 9

Contents

Understanding the SIP Protocol 241
Introduction to the SIP Protocol 241
Overview of SIP Functionality e e 242
Overview Of Operationt 244

Using Third Party IP Stacks 254
Integrating Bfv IP FaX 255

COMPONENTS . oo 256
ConfigUration e e 257
Disable ECC COMPONENtt e 257
Brooktrout SR140 Software-Based Integration - Linux 257
TR1034 Board-Based Integration - Linux, 258
Call Negotiationt e 259
Inbound Call 259
Outbound Call e 260
SR140 Internet Aware Fax (IAF) SupportoverUDP ciuu... 262
Chapter 7 — Robbed Bit Signaling 266
This chapter describes robbed bit signaling as used with BSMI-level call
control.

General Information e 266
Timer DefinitionNs e 269
TIMING Diagrams 276

Wink Start & Delay Dial Signaling 277
Incoming Call ProCesSINgo it e e e e 278
Outgoing Call ProCeSSINGttt 280
Call Teardown ProCESSING . .« oottt e e e e e e e e 280

Wink Start with Feature Group B & D 282
Incoming Call ProCessiNg oottt 282
Outgoing Call Processingt e e e e 284
Call Teardown ProCeSSINGttt et e e e 284

Immediate Start/Fixed Pause Signaling i 286
Incoming Call Processing (Immediate Start) 286
Outgoing Call Processing (Fixed Pause Mode) 288
Call Teardown ProCesSiNgo vttt e et e e e et 288

Ground Start Signalingo e 290

March 2020 10

Contents

FXO Ground Start e 290
Incoming Call Processingt e 290
Outgoing Call ProCesSiNg . ..o v v vttt e e e e 292
Call Teardown ProCeSSING . .. oottt e e 292

FXS Ground Start 296
Incoming Call ProCesSSINgo v vttt e e e 296
Outgoing Call ProCesSINGottt e e 298
Call Teardown ProCeSSING .. v v v vttt e e e e 298

Loop Start Signalingo e 302
FXO LOOP Start . ..ot e 303

Incoming Call ProCeSSINgo v ittt e e 304
Outgoing Call ProCesSINgottt e e 304
Call Teardown ProCessSiNgt ii e e e 304

FXS LOOp Start 309
Incoming Call ProCesSiNgttt e e e 309
Outgoing Call ProCessingo o vt e 309
Call Teardown ProCesSINgttt e e e 310

Chapter 8 — ISDN Call Processing and Management.......... 316
This chapter describes ISDN call processing using BSMI-level call
control.

ISDN Call Processing OVEeIVIEWottt e e e e e e et 318
Making an ISDN Incoming Call 318
Making an ISDN Qutgoing Call i e 321

ISDN Overlapped Dialing e 323

ISDN Call Clearing - Initiated by Module i, 323

ISDN Call Clearing - Initiated by Network 325

Translating Q.931 to Simple Message Interface 327

Using the overlap_rcv feature of LAL3MENABLE_PROTOCOL 328
What is Overlap ReCeiVe? e 328
BSMI Reference NOteS i 329
How Overlap Receive Mode Changes Call Control Events Presentation 330

Q.921/Q.93 L TIMEIS .\ v ettt et e e e 332

March 2020 11

Contents

Chapter 9 — Using the BSMI R2 Signaling Capability.......... 335
This chapter describes R2 signaling as used with BSMI-level call control.

CPE Signaling Model 336

Enabling the R2 Protocol 341

Protocol Parameter Mechanics i 347

Forward Channel e 348

Backward Channel 349

R2 Call Control e 354

Outbound Call Setup e 355

Inbound Call SetUpt e 358

Call Tear DOWN . ..o e 360

Channel BIoCKINGot e e 362

Chapter 10 — Packaging Your Application for Windows 363

This chapter describes how to package Dialogic® Brooktrout® software
so that you can deliver it to your customers as part of your product.

Package Oplions i 365
InStallation 366
Installing Modules 366
Installing Virtual Modules (SR140) o e 367
Installing Software e 367
Installing the Brooktrout Runtime Software 367

About the Merge Module Feature i 375
Installing the Merge Module Feature 385
Integrating the Modules 385
Determining Versions of Microsoft Visual C Runtime Components 390

About Plug and Play COmMpPoNents e 392
Structure of the Brooktrout PnP Folder 394
About the INF File e e 395
About the Device Property Page e 395
Modifying Configuration Files 397
User-Defined Configuration File (btcall.cfg) it 397
Call Control (callctrl.cfg) Configuration File 398
Including the Brooktrout Configuration Tool 398

March 2020 12

Contents

Downloading Firmware Files 400
Removing Software e 401
Removing the Plug and Play Driver e e 402
Appendix A — G3 Legacy Utilities 404
This appendix describes legacy utilities that help manipulate raw G3 fax
files.
ASCII to Fax Conversion Utility (asctog3) ... 406
Cutand Paste Utilities i e 407
Cut Utility (g3Chop) ... oo 407
Paste Utility (g3combin) 408
Epson to Fax Conversion Utility (epstog3) oot e 409
Fax Display and Edit Utility: Supershow (SS) 411
G3 Conversion Utility (g3CVE) oo 413
Print UtIlity (D) « .« o oo oo oo e 415
Appendix B — Recompiling On Linux Platforms.............. 417

Refer to “Recompiling on Linux Platforms” in the Dialogic® Brooktrout®
Fax Products SDK Installation and Configuration Guide.

GloSSarY .o 418

March 2020 13

Preface

Introduction

The Dialogic® Brooktrout® Fax Products SDK Developer Guide describes
the Bfv API used to create applications to control the features of the
Dialogic® Brooktrout® TR1034 Fax Boards, Dialogic® Brooktrout®
TruFax® Fax Boards, and the Dialogic® Brooktrout® SR140 Fax Software.
The manual gives information about Call Transfer, IP functionality, and
BSMI functionality. Finally, it explains how one can include and package
software supporting Brooktrout® Fax Boards or Dialogic® Brooktrout®
SR140 Fax Software in your product.

The manual contains the following chapters:

m Chapters 1 through 4 provide information about:

*

*

*

*

The structure of the BFv API

How to develop applications using the Bfv API
Debugging

Sample applications

m Chapters 5 through 9 describe some advanced topics such as:

*

* & o o

Call Transfer
Internet Fax Sessions
Robbed bit signaling
ISDN protocols

R2 signaling

m Chapter 10 describes how to package software supporting Brooktrout
software or SR140 Fax in your product.

March 2020

m Appendix A provides instructions for a set of legacy G3 utility
programs.

m Appendix B provides instructions for recompiling the driver to
support new kernel patches.

m A glossary gives definitions for some of the terms used in the
manual.

A copy of this manual in Adobe Acrobat PDF format is installed in the
Documents directory on the Dialogic® Brooktrout®
TR1034/SR140/TruFax® SDK CD-ROM.

Related Documents

The Dialogic® Brooktrout® Bfv API Reference Manual is made up of
six volumes that contain the Bfv API function libraries, including the
Bfv API, BSMI APl and messages.

The installation and configuration guide that came with your software
explains how to install the software (firmware, Bfv API, and driver for
the TR1034/SR140/TruFax® products) on your host system. It also
describes how to configure the driver, configure call control, and
download the firmware to a board.

For product information, white papers, FAQs, and more, access the
Dialogic web site at www.dialogic.com.

Operating System Support

See the latest Dialogic® Brooktrout® Release Notes that came with
your SDK for the supported operating systems and their versions. The
Release Notes are located in the Documents directory on the Dialogic®
Brooktrout® TR1034/SR140/TruFax® SDK CD-ROM.

Manual Conventions

This manual uses the following conventions:

m |talics denote the names of variables in the prototype of a function
and file names, directory names, and program names within the
general text.

March 2020 15

< <

m The courier font in bold indicates a command sequence entered
by the user at the system prompt, for example:
cd /Brooktrout/Boston/bfv.api

m The Courier font not bolded indicates system output, for example:

C:>Files installed.

m The Courier font also denotes programming code, such as C, C++,
Microsoft Visual Basic, and TSL. Programming code appears in
program examples.

m Bold indicates the data type of the prototype of a function, Bfv API
functions, dialog boxes, dialog box controls, windows, and menu

items.

m Square brackets [] indicate that the information to be typed is
optional.

m Angle brackets < > indicate that you must supply a value with the
parameter.

The Caution icon is used to indicate an action that could cause harm to the
software or hardware.

The Warning icon is used to indicate an action that could cause harm to
the user.

March 2020

16

Terminology

Updated Terminology

The current version of this document includes terminology that differs
from previous versions. Please note the changes below:

Former Terminology Replaced with...

Host-based fax Dialogic® Brooktrout® SR140 Fax Software
Virtual modules or

Virtual boards Brooktrout SR140 Fax Software

Software modules or

VolP modules SR140 Software

SR140 virtual modules or

SR140
TR1000 Series SDK Dialogic® Brooktrout® SDK
TR1000 Series Product Dialogic® Brooktrout® Fax Board
TR1000 Series Module or
TR1000 Series Board Brooktrout fax board

or

board

Brooktrout System Software Dialogic® Brooktrout® Runtime Software

March 2020 17

Dialogic® Brooktrout® TR1034 Fax Board Terminology

The Dialogic® Brooktrout® TR1034 Fax Board is also referred to
herein by one or more of the following terms, or like terms including
“TR1034™:

Brooktrout TR1034 Fax Board

Brooktrout TR1034 Board

TR1034 Fax Board

TR1034 Board

March 2020

18

Getting Technical Support

Dialogic provides technical services and support for customers who
have purchased hardware or software products from Dialogic. If you
purchased products from a reseller, please contact that reseller for

technical support.

To obtain technical support, please use the web site below:

www.dialogic.com/support

March 2020

19

1 - Introduction to the
Dialogic® Brooktrout®
Bfv API

This chapter describes the Dialogic® Brooktrout® Bfv APl and its
capabilities.

The chapter has the following sections:

m Bfv APl and Associated Libraries on page 21
m The Bfv API Functions on page 24

March 2020 20

Bfv APl and Associated Libraries

The Bfv Application Programming Interface (API) provides a set of
functions that enables applications programmers to write
applications that run on the Dialogic® Brooktrout® SR140 Software
and Dialogic® Brooktrout® TR1034/TruFax telecommunications
products. Using the Bfv API, you can generate sophisticated,
multichannel voice and fax applications under Linux and Windows
operating systems.

The Bfv API comprises of several libraries that work together to give
flexibility in a variety of applications such as:

Voice processing (Dialogic® Brooktrout® TR1034 Fax Boards
only) and signal generation and detection

Fax

Connection to a variety of telephony interfaces:
T1 robbed bit

T1/E1 PRI

R2 CAS signaling

Analog

BRI

QSIG

IP (SIP and H.323)

* 6 ¢ 6 o o o

The libraries include:

Bfv API

Provides telephone line administration and initialization; board,
firmware, call control, and packet network configuration and
control; debugging and error handling, high-level call control for
analog, T1 robbed bit signaling, BRI, QSIG, and T1/E1 PRI; voice
play and record; signal generation and detection; fax
manipulation from high to low level; and file formatting for voice
and fax messages.

Boston Simple Message Interface (BSMI)

Provides very low-level call control for T1/E1 ISDN and

R2 signaling. The Bfv API uses the BSMI library to handle the
T1/E1 call control, but the higher-level call control functions
manage BSMI for you.

March 2020

21

By using the Bfv API libraries, the application running on the host
processor can communicate through the driver and firmware to one
or more Dialogic® Brooktrout® boards.

Your Bfv-Based Application

Your Bfv-Based Application

Bfv AFI BSMI

Boston Driver

‘ Boston SR140 Viriual Board ‘ ‘ Boston Firmware ‘

Boston TR1034/TruFax Board ‘

Figure 1. Bfv Application Configuration

The TR1034 and TruFax® have an assigned module number as
indicated on the rotary switch on top of the board, so you can have
control over channels on individual boards in a multi-board system.
The Dialogic® Brooktrout® SR140 uses a module numbers starting
at 0x41 with up to a maximum of 120 channels per SR140 module.

The SR140 does the following:

Works on supported Linux and Windows platforms running on
Linux and Windows platforms.

Works with SIP and H.323 IP call control.
Operates with only one IP stack at a time.

Provides the same level of debugging and tracing that is
available on the TR1034 platform.

After configuration and licensing, the same application supports
the SR140 and your hardware based T.38 solution.

Media on a Boston modules is driven by the Bfv API. Call control on
the TR1034/TruFax Boston module's can be driven by BSMI or the
Bfv API. SR140 Boston module can only be used with the Bfv API.

March 2020

22

The Bfv API libraries are based on the BTLINE structure, which is a
logical abstraction of a physical channel. Each active channel stores
its information within its own BTLINE structure. You can access
and modify the BTLINE information through the Bfv API functions.
You can access other information kept in the Bfv API library, using
macros found in btlib.h.

March 2020

23

The Bfv APl Functions

The Bfv API functions in all the Bfv API libraries are separated into
categories according to the tasks they perform. They are:

m Configuration, Administration, and Management

*

* & ¢ o

Administration and Initialization

Firmware

Configuration

Debugging, Error Handling, and Return Values
Miscellaneous (for example, _dll_ and getopt)

m Call Control

*

*

High Level Call Control
Low Level Call Control

m Media Processing

*

*
*
*

Signal Generation and Detection
Voice Play and Record

Fax

File Format Manipulation

In addition to the functions, Dialogic supplies macros to provide
information or perform a specific task.

March 2020

24

Administration, Management, and Configuration

Administration and Initialization Functions and
Macros

The administration and initialization functions allow you to:

m Attach and detach from a line or a session.

m Configure the module instead of using a user-defined
configuration file such as btcall.cfg.

Interrupt a thread or process on an active line.
Reset the specified channel.

Get information about the module and channel address for the
specified channel.

B Get the number of available channels.
You can also use specialized functions to:

m Check for an address or facility.
Download and query the feature set.
Get information about and deactivate a board or SR140.

Receive a packet containing Boston addresses and commands
and perform internal Bfv API processing on all commands with
the packet (requires the Boston command set).

The line administration and initialization macros allow you to:

B Get information about the current version of the Bfv API or
driver and some information about the operating system
environment.

Clear an item.
Get information about a line.

March 2020

25

The BTLINE Structure

When an application calls the BfvLineAttach (or BfvSessionAttach)
function to open and attach to a specified channel, the function
creates a separate BTLINE structure for the channel and returns a
pointer to the line structure. All information about the channel is
stored in its BTLINE structure, but only the line state, the line type,
and channel number are actually relevant. The BfvLineDetach (or
BfvSessionDetach) function deallocates a BTLINE structure.

Applications do not directly access the internal fields of the BTLINE
structure, but instead use functions and macros described in detail
in the Dialogic® Brooktrout® Bfv APl Reference Manual:
LINE_HAS_CAP (Ip, cap)

Confirms whether or not the line has the specified capability cap.

LINE_STATE (Ip)
Returns or sets the line state of the specified line.

LINE_TYPE (Ip)
Returns the line type of the specified line.

LINE_UNIT_NUM (Ip)
Returns the channel number of the specified line.

A line is always in one of the following states:

LINE_STATE_AWAIT_TRAINING
LINE_STATE_CONNECTED
LINE_STATE_FAX MODE
LINE_STATE_HOLDUP
LINE_STATE_IDLE
LINE_STATE_NOLOOP
LINE_STATE_OFF_HOOK
LINE_STATE_RCV_INFO
LINE_STATE_RESETTING
LINE_STATE_RETAIN
LINE_STATE_RINGING
LINE_STATE_TURNAROUND

March 2020

26

Hereafter each of the line states is referred to by the descriptive part
of its name only (for example, LINE_STATE_IDLE is referred to as
IDLE).

The current state of the line is stored in the BTLINE structure. A
pointer to this structure is passed as an argument to nearly all Bfv
API entry points and is provided to the application by the
BfvLineAttach function.

A number of functions and interrupts serve as inputs to the BTLINE
structure and affect the transition to different line states. Other
functions check the current line state.

Some functions conditionally branch to other points in the code, and
some prevent inappropriate action from occurring, for example,
frequent checking for CONNECTED before attempting to transmit
data.

The following is a partial list of the functions and interrupts and the
line state they set:

FUNCTION LINE STATE

BfvLineAnswer Sets the state to CONNECTED.
BfvLineAttach Initializes the state to IDLE.
BfvLineOriginateCall Sets the state to CONNECTED Or OFF_HOOK

depending on the results from call
progress monitoring.

BfvLineReset Resets the state to IDLE.
BfvLineTerminateCall Sets the state to IDLE.
INTERRUPTS LINE STATE

Answer tone detect Sets the state to CONNECTED.
Direction change Sets the state to TURNAROUND.
Disconnect Sets the state to IDLE.

Received FSK data Sets the state to AWAIT_TRAINING.
Ring detect Sets the state to RINGING.
Training Sets the state to FAX_MODE.

March 2020

27

Channel Numbering

The Bfv API uses two numbering schemes when referencing
channels within a system. One is the unit number or ordinal channel
number; the other is the logical channel number.

The unit number is a number range 0...n-1, where n is the number of
channels in the system. The BfvLineAttach function uses the unit
number in its argument and returns a pointer to the BTLINE
structure, providing a means to reference the channel in future
function calls. For example, a system comprising two 60-channel
modules would have a unit number range of 0-119. The module that
had the firmware downloaded first would contain the channels
starting from 0.

The logical channel number is used together with the module
number to reference a work channel (also called a hardware channel)
in a system. The BfvSessionAttach function uses the module and
logical channel numbers in its arguments. Logical channels not only
include work channels traditionally considered to be channels, but
also administrative channels. The work channel number range for
logical channels is 2...n+1, where n is the number of work channels
on this hardware module.

Each module has a unique module number. For example, the same
system comprising two 60-channel modules could have the following
configuration:

® First module: Module 2, work channels 2-61
®m Second module: Module 3, work channels 2-61

Each virtual module can have up to 120 channels.

The BfvSessionAttach function also returns a BTLINE structure;
other functions that accept a BTLINE structure as an argument can
use either that returned from BfvLineAttach or
BfvSessionAttach. When detaching, use the corresponding detach
functions BfvLineDetach or BfvSessionDetach.

March 2020 28

Firmware Functions and Macros

With the specialized firmware functions, you can:

m Download firmware to the module from a file or a buffer
m Get information about a module’s firmware configuration options

With the firmware macros, you can determine:

® Version number, build number, and date of the control processor
firmware

® Version number, build number, and date of the boot ROM
firmware

® Version number, build number, date of each DSP firmware, and
the number of DSPs on the module

Configuration Functions

The Bfv API provides functions that allow you to get the current
information about the telephony configuration, reset the telephony
state, and save telephony parameters to Non-Volatile RAM
(NVRAM).

You can also establish a connection between source and destination
telephony resources; get information about the connections, their
ports and classes; and clear all switching connections for a module.

March 2020

29

Configuration Files

The Bfv API uses several configuration files that let you configure
the Bfv APl and driver, call control, and country-specific parameters.
These files are described below. Sample versions of the files are
stored in the directory /Brooktrout/Boston/config.

B The user-defined configuration file

A file that contains configuration parameters for the Bfv APl and
driver. A sample of this file, called btcall.cfg, is provided with the
software, but you can write your own or modify/rename the
existing one. Many of the sample applications (see Sample
Applications and Utilities on page 120) use btcall.cfg.

m The call control configuration file

A user-supplied file that contains call control configuration
parameters. Several samples of this file are provided with the
software. One sample is called callctrl.cfg, while others have
names that specify the type of telephony interface. See the
directory /Brooktrout/Boston/config/samples.cfg for the names
of the files.

m The telephony configuration file

This file is obsolete and has been superseded by the call control
configuration file.

m The BT_CPARM.CFG file.
A read-only file that contains country-specific parameters.

March 2020

30

Module Status and Monitoring Functions

With the module status and monitoring functions, you can:

Set and get the state of the module by reading the status LED.

B Set the module temperature threshold.
m Get the temperature of the module.
m Have the module perform a series of self tests and, optionally

report the results.

m Have the module notify the application of events or conditions on
the module such as a network alarm, network error,
H.100/H.110 clock event, temperature alarm, RTP/RTCP
transport layer events, and the general status of the module.

Debugging, Error Handling, and Return Values

Functions

Several Bfv API functions help you debug your application program
and discover/recover from errors.

You can enable debug mode so that the Bfv API prints commands,
data, interrupts, and status messages, or you can set up a function to
be used with Bfv API debug mode that directs output to a file or
filter (see Debugging on page 90).

When you install the Bfv API, you enable recording of the history of
the activity of the driver along with the hardware type, the firmware
version, and the boot ROM version. You can then use functions to
dump the buffer containing the driver’s history for a module and
channel to a file. You can also clear the history buffer for a module
and channel so that it contains information relevant to the current
application.

If you have a RES structure that contains returned error
information from a previous Bfv API call, you can use the
BfvErrorMessage function to create a short and a long error
message in a BTERR structure. Then, you can print either the long
or short message from the structure.

When you start call control using BfvCallCtrlInit, you can enable a
call control log file.

March 2020

31

Structures and Return Values

The Bfv API uses argument structures to pass values to and from
functions. The application declares the argument structure and
passes a pointer to it to the function. The argument structure type is
named args_...; for example, struct args_speech. The same
argument structure type is used for functions that are related or in
the same category.

Contained within the argument structure are structure fields that
are used for input and/or output. Each function that uses an
argument structure has marked the fields that are used for each
purpose. Not all fields are used by all functions taking any particular
argument structure type.

Result structures are the most commonly used structures to return
information to the function. They are:

RES Returns status information in res.status and some additional
information in res.line_status.

CALL_RES Returns information about a call such as its type and destination. If
applicable, information such as called party and redirect information
are returned as well.

March 2020 32

Miscellaneous Functions and Macros

Some administration functions and macros cannot be classified with
other functions, but are useful in various ways. For example:

_dll... functions for use on Windows operating systems. These
functions call standard C library functions such as fopen, fclose,
fread, and fwrite; their arguments use the runtime library linked
with the DLL.

The getopt function parses command line options in a Linux
environment. Most of the sample applications/utilities use this
function (see Sample Applications and Utilities on page 120).

The BfvMemAllocFuncSet function allows you to write your
own functions to dynamically allocate and free memory instead
of using the Bfv API functions to do so.

The sleep macro lets you write applications that sleep for a
defined period of time (in seconds). This macro is only defined for
environments that do not have built-in sleep functions.

March 2020

33

Call Control

Call control functions enable the application to set up, initiate,
connect, disconnect, and perform other tasks related to the telephone
network. Three forms of call control are available: Bfv high-level,
low-level and BSMI-level.

Bfv Call Control

High-level Bfv call control functions simplify the process of accessing
the telephone system. Some of the high-level functions call the
low-level Bfv call control functions to automatically perform the
low-level tasks. However, the high-level functions trade flexibility
and control for ease of programming.

With the Bfv low-level call control functions, you can perform T1
robbed bit, TI/E1 PRI, T1/E1 QSIG, E1 R2, analog, BRI, SIP, and
H.323 call control functionality. See Volume 2 of the Dialogic®
Brooktrout® Bfv API Reference Manual for the descriptions of the
Bfv call control functions.

BSMiI-Level Call Control

The BSMI-level call control functions are used to facilitate
communications directly between the module and the telephony
lines. These are the Bfv APl Boston Simple Message Interface
(BSMI) functions that use messages to communicate between the
module and the telephone lines. The collection of messages is the
interface to the telephony component of the Boston firmware and
provides all the facilities for management, call control, and
performance statistics monitoring. Control message naming
conventions in the BSMI are descriptive of the functions they serve
and make it easier to develop applications. When developing an
application, you do not need to have a detailed knowledge of the
protocol involved, although a general understanding of call models is
beneficial. You can use one of many different signaling protocols
such as T1/E1 PRI; R2; and Local Exchange Carriers (LEC) T1
Robbed Bit, Analog and BRI. See Robbed Bit Signaling on page 266 -
Using the BSMI R2 Signaling Capability on page 335 for more
information about the protocols.

Note: BSMI is not supported on QSIG, SIP, and H.323.

March 2020

34

Typically, the BSMI is used as one component of a system. Firmware
download, for example, is achieved using the call control functions of
the Bfv API. Through the Bfv API, you can perform all appropriate
configuration and management functions for the Brooktrout
products.

BSMI is used by the Bfv call control functions to perform call
processing. BSMI is a level lower than the Bfv API, providing
greater flexibility.

The host communicates with the module through the Control
Interface. The host application (referenced as L4) issues BSMI
control messages to configure the module or to instruct it to perform
a specific action, such as make a call, clear a call, or request the
status of an interface. The module-issued BSMI control messages
(referenced as L3) inform the host of the status of the interface, call
events, or an error condition.

BSMI supports the R2 signaling protocol. Using the BSMI host to
module messages, you can:

m Start and stop the R2 protocol on a particular timeslot on an E1
span.

m Block or unblock an idle B-channel (the ISDN channel that
handles data).

® Place an outbound call.
B Answer an inbound call.
® Disconnect a call.

Reject an incoming call.
BSMI module to host messages respond to the host by:

Starting and stopping the R2 protocol.

Blocking or unblocking the B-channel.

Seizing the line for an incoming call.

Alerting the host and then connecting a call.

Clearing a request.

Notifying the host when the remote end phone is ringing.

Notifying the host when the call is disconnected at the remote
end.

® Providing a protocol error or invalid command status message.

March 2020

35

Media Processing

Media processing refers to the operation that is performed on the
modules. Depending on the product configuration, it can include:

m Signal generation and detection
m Voice play and record

m Faxing

m File format manipulation

Signal Generation and Tone Detection

With the signal generation and tone detection functions, you can:

m Play call progress signals and generate other tone groups and
tone patterns.

Get the next call progress code.
Enable and disable DTMF detection.
Discard tones from a buffer.

Wait for a tone and return it as an ASCII character or return it
without disturbing the buffer.

m Play a tone for a specified time.
m Play a single frequency tone or a custom tone.
m Replace a tone in the buffer for reuse.

The module receives call progress signals generated by telcos and
Private Branch Exchanges (PBXs) before, during, and after dialing.
The module's call progress analysis processes then interprets them.

During call progress analysis, modules can report dial tone
detection, ring-back, busy signals, remote fax tone detection, and
other important information. Applications can use this information
to determine their next course of action, to display the status of a
call, or to track billing information. Applications can use postdialing
results, such as HUMAN and BUSY, to decide what redialing strategy
to use.

Modules can also generate and play DTMF and MF tone groups and
single tone patterns to send to the telco or PBX.

March 2020 36

Voice Record and Play

With the Bfv voice record and play functions, the application can:

m Open, play, and close a previously recorded prompt file.

m Record speech into an infopkt stream, a raw speech data buffer,
a raw speech file, or a wave file.

m Play back speech from an infopkt stream, a raw speech data
buffer, a raw speech file, or a wave file.

m Modify the volume and rate of a speech playback while it is in
progress.

The voice functions allow you to write Interactive Voice Recognition
systems where you can record prompts for later playback. You can
also build voice mail systems for recording and playing back
messages.

Fax Functions

The Bfv API provides a wealth of fax functions that allow you to
control every aspect of sending and receiving V.17 or V.34 faxes.

The fax functions are divided into high-, mid-, and low-level
functions. Volume 4, Fax Processing, in the Dialogic® Brooktrout®
Bfv API Reference Manual provides a detailed description of each Bfv
function.

Generally, the high-level functions simplify the process of
transmitting and receiving facsimiles. Since the high-level functions
incorporate many of the appropriate low-level functions to
automatically perform the basic low-level tasks, applications using
the high-level functions are freed to perform other tasks. For
example, the high-level function BfvFaxSend is constructed of
these mid- and low-level functions:

BfvFaxBeginSend
BfvFaxEndOfDocument
BfvFaxGetRemotelnfo
BfvFaxSendPage
BfvFaxSetLocalld

BfvFaxWaitForTraining

March 2020

37

The high-level functions trade the maximum flexibility and control
provided by the low-level functions for ease of programming.

The mid-level functions provide more flexibility and control than the
corresponding high-level functions, but they require more knowledge
of and attention to the basic steps involved in sending and receiving
facsimiles.

The low-level functions provide the greatest flexibility and control
over sending and receiving facsimiles, but they require extensive
knowledge of and attention to the basic steps involved in each of
these tasks. For example, applications can screen phone calls based
on an ID string or NSF information with the low-level functions, but
not with the high-level functions.

Both the high- and mid-level functions use only infopkt files, so the
distinction between them is measured in the flexibility and control
they provide. The low-level functions, however, use only raw data
files.

Combining the high-, mid-, and low-level functions within the same
application program is valid and useful. Need for the low-level calls
depends on the degree of flexibility and functionality an application
requires.

Table 1 contains a partial list of the high-, mid-, and low-level
functions that perform fax tasks.

Table 1. Fax Functions by Type

Type/Level Function Names

High-Level BfvFaxPoll
BfvFaxReceive
BfvFaxSend

March 2020 38

Table 1. Fax Functions by Type (Continued)

Type/Level

Function Names

Mid-Level

BfvFaxBegin
BfvFaxBeginReceive
BfvFaxBeginSend
BfvFaxEndReception
BfvFaxNextPage
BfvFaxReceivePage
BfvFaxReceivePages
BfvFaxSendPage
BfvFaxSetReceiveFmt
BfvFaxTurnaround

Low-Level

BfvFaxBeginRaw
BfvFaxBeginSendRaw
BfvFaxEndOfDocument
BfvFaxGetLocalld
BfvFaxGetRemotelnfo
BfvFaxNextPageRaw
BfvFaxPageParams
BfvFaxReceiveData
BfvFaxReceiveFile
BfvFaxSendData
BfvFaxSendFile
BfvFaxStripParams
BfvFaxWaitForTraining

In addition, the fax functions are divided into two subgroups: those
that process infopkt-formatted data files and those that process
ASCII or G3 data files in other formats. For fax functions that
process raw ASCII or G3 data files rather than infopkt-formatted
data files, see Volume 4, Fax Processing, in the Dialogic®
Brooktrout® Bfv APl Reference Manual.

File Format Manipulation Functions

Using the file format function calls, you can perform the following

infopkt operations:

m Open and close infopkt stream files

® Find the pointer position in an infopkt stream file

March 2020

39

m Look for an offset to a specific place in an infopkt file

m Read from and write to an infopkt stream file or buffer

m Put the last infopkt read back into the infopkt stream file

m Create your own function to handle user-defined infopkt files
Infopkts

An infopkt is a structure, consisting of a tag and associated data,
that organizes different data types (ASCII, voice, and fax data) into a
single structure for transmission or reception.

The Bfv functions can process voice and fax data that is stored in
files containing infopkt structures. Infopkt structures contain speech
or fax formatting and control parameters, speech or fax data, or
pointers to other data or infopkt files. These structures provide a
flexible and easily extendable method to combine and transmit
various types of data.

For voice applications, infopkts provide an easy means to build
sophisticated interactive voice systems. Using infopkts, a voice
application can create a master prompt file that builds all of the
system's prompts out of short phrases.

This scheme:

Reduces the amount of disk space needed for storage.

Enables the application to build new prompts as changing
demands on the system dictate.

m Simplifies the development of multilingual systems that can
translate recorded prompts to other languages on-the-fly.

For fax applications, infopkts provide a flexible means to transmit a
complex, computer-generated fax document.

A fax transmission consists of one or more documents. A document
consists of one or more pages containing the document parameters,
agreed upon by two communicating fax machines according to the
T.30 protocol, that do not change. A page consists of one or more
strips of data, converted from their original format to the established
document format for transmission.

To a fax machine, a document is a simple object with three
parameters: vertical resolution, length, and width. To a computer, a
document is often more complex.

March 2020 40

Tag Infopkts

For example, fax applications might require the transmission of
ASCII data in fax format. The fax module converts the ASCII data to
G3 format in real-time. A file header and signature, already in

G3 fax format, can accompany the ASCII data. The infopkt structure
makes it easy to send a document of this type because it organizes
fax and ASCII data into a single structure for transmission and
reception.

The Bfv API defines and supports the infopkt types described on the
following pages:

Tag Infopkts on page 41
Data Infopkts on page 43
Indirect Infopkts on page 43

User-Defined Infopkts on page 44

Contain speech parameter structures (which describe the sample
rate, coding format, and data format of the speech or indicate the
end of speech playback), and fax parameter structures (which
describe a strip or page of data, the line parameters, or control
parameters). They are:

INFOPKT_ASCII_STRIP_PARAMETERS

Tag containing parameters for ASCII data strip.

INFOPKT_BEGINNING_OF_PAGE

Tag indicating the beginning of a new page with no new parameters
from the previous page.

INFOPKT_DOCUMENT_PARAMETERS

Tag indicating new page composition parameters. An infopkt stream
must begin with this infopkt type. This is used, for example, to
change the resolution between pages in the middle of a fax
transmission.

INFOPKT_EFF_PAGE_PARAMETERS
Tag containing enhanced fax format page parameters.
INFOPKT_END_OF_SPEECH

Tag indicating end of speech playback.
INFOPKT_FAX_HEADER

Tag specifying a header or footer to appear on all subsequent pages
of a fax transmission.

March 2020

41

INFOPKT_G3_STRIP_PARAMETERS

Tag containing parameters for G3 data strip.

INFOPKT_PAGE_PARAMETERS

Tag containing margin and padding parameters for a page.

INFOPKT_SPACE

Tag containing the spacing parameters for a fax page or a fax
overlay.

INFOPKT_SPEECH_PARAMETERS
Tag containing parameters for succeeding speech infopkts.
INFOPKT_T30_PARAMETERS

Tag containing T.30 line parameters bit rate and scan time. When
ECM is in use, the scan time specification has no effect.

March 2020

42

Data Infopkts

Indirect Infopkts

Contain just the header and data, permitting applications to
organize large files as a sequence of small data infopkts. They are:

INFOPKT_ASCII
ASCII data.

INFOPKT_G3
G3 data.
INFOPKT_ PROMPT MAP

Used only in prompt files. Contains information on how to find each
of the phrases in the prompt file.

INFOPKT_SPEECH
Speech data in any of several coding formats.

Contain a pointer to a file that contains either raw data (ASCII,
speech, or G3) or infopkts. They are:

INFOPKT_INDIR_ASCII
Pointer to an ASCII file.

INFOPKT_INDIR_DCX

Pointer to an Intel DCX fax file that contains PCX data and its own
header information.

INFOPKT_INDIR_G3
Filename of a G3 file.

INFOPKT_INDIR_INFOPKT

Pointer to another infopkt stream file.

INFOPKT_INDIR_SPEECH

Pointer to a raw speech file.

INFOPKT_INDIR_TIFF

Pointer to a TIFF-F file that contains G3 data and its own header
information.

INFOPKT_INDIR_WAVE

Pointer to a wave file that contains speech data and its own header
information.

March 2020

43

User-Defined Infopkts

Contain a header (the document’s title, the subject of the document,
or the total number of pages that the document contains) and
user-defined information (document summary and statistics, etc.)
useful to an application. When the Bfv APl encounters these infopkt
types, it ignores them. See the BfvinfopktUser function in Volume
4, Fax Processing, in the Dialogic® Brooktrout® Bfv APl Reference
Manual. They are:

INFOPKT_USERO_USERL...._USER9

Infopkt containing a header and storage for user application
information. A maximum of ten user-defined infopkt types
(numbered 0 to 9) are included in an infopkt stream.

INFOPKT_ANNOTATION

Contains header and ASCII text, but is otherwise identical to the
user types described above.

The Infopkt Stream

An infopkt stream is a file or memory buffer containing concatenated
individual infopkts. The length of an infopkt stream is limited only
by the file size conventions specific to an operating system. The
BfvinfopktOpen function opens file-based infopkt streams, and the
BfvinfopktOpenMem function opens memory-based infopkt
streams.

For speech record and play applications, the first infopkt in the
infopkt stream depends on the type of speech file.

If the speech file is an indexed prompt file (see mkprompt on

page 148 in this manual, and the BfvPromptPlay function in
Volume 3 of the Dialogic® Brooktrout® Bfv APl Reference Manual),
an INFOPKT_PROMPT_MAP infopkt begins the infopkt stream. An
INFOPKT_SPEECH_PARAMETERS infopkt begins each new speech file
embedded within the infopkt stream.

If the speech file is a simple speech file, one recorded with the
BfvSpeechRecord function, an INFOPKT_SPEECH_PARAMETERS
infopkt begins the infopkt stream.

March 2020

44

Creating an Infopkt Stream

The mkinfopk program, included on the distribution media, builds
an infopkt stream. It has the following command syntax:

mkinfopk -o output_fname {infopkt_ type arg}...

-0 output_fname Is the name of the output file.
infopkt_type Indicates the type of infopkt which follows.
arg Is the argument for the infopkt. Depending on

the infopkt_type, it is either a file name or a
dummy value.

For more detailed information on mkinfopk, see mkinfopk on
page 146 in this manual.

The decode program, also included on the distribution media, reads a
specified infopkt stream and lists the individual infopkts within the
stream. See Sample Applications and Utilities on page 120 in this
volume for more detailed information on how to use this utility.

Figure 2 illustrates how to create an infopkt stream to play either an
indexed prompt file or a simple speech file. You must create a
separate infopkt stream for each type.

March 2020

45

Indexed Prompt File
(mkprompt)

_PROMPT_MAP

Index to prompt file

_SPCH_PARAMS
smp rate, coding fmt, bits-
smp, afe rate, data fmt

Simple Speech File
(mkinfopk)

_SPCH_PARAMS
smp rate, coding fmt, bits-
smp, afe rate, data fmt

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_END_OF _SPEECH

embedded speech file

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_SPCH_PARAMS
smp rate, coding fmt, bits-
smp, afe rate, data fmt

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data
CVSD, ADPCM, PCM, OKI

_END_OF _SPEECH

embedded speech file

Figure 2. Flow Chart for Creating Infopkt Streams that Play
Speech

March 2020

The following sample shows how to create an infopkt stream file to
test the fax functionality of your hardware and software:

mkinfopk -o fax.ips doc 1 ascii fax.c

Where:

fax.ips Is the name of the output infopkt stream file that contains
the ASCII file fax.c (the sample fax application program
included on your distribution CD).

doc Is required as the first infopkt in a stream (1 is its
argument). See mkinfopk on page 146 for more
information about doc.

ascii Indicates that the input file fax.c is an ASCII formatted
file.
fax.c Is the input file.

For fax-receiving applications, an INFOPKT_DOCUMENT_PARAMETERS
infopkt begins each new G3 page within it. If the application uses a
nonstandard receive format (see the BfvFaxSetReceiveFmt
function in Volume 4, Fax Processing, in the Dialogic® Brooktrout®
Bfv APl Reference Manual), it must also include a
G3_STRIP_PARAMTERS infopkt.

For fax-transmitting applications, an infopkt stream must begin
with an INFOPKT_DOCUMENT _PARAMETERS infopkt. Any type of
infopkt or combination of infopkts can follow the first
INFOPKT_DOCUMENT_PARAMETERS infopkt.

Within a fax-transmitting application, a new page is indicated when
one of the following infopkt types is encountered in an infopkt
stream:

INFOPKT BEGINNING_OF_ PAGE

INFOPKT_DOCUMENT PARAMETERS

INFOPKT T30_PARAMETERS

INFOPKT_FAX_ HDR

Figure 3 on page 48 illustrates how to create an infopkt stream that
transmits G3 data. G3 data includes MH, MR, MMR, and PCX
formats.

March 2020

47

START

*
optional/conditional

<Y

A4
_DOC_PARAMS

res, len., width

\
* _T.30_PARAMS

bit rate, scan time
f————

*
_PAGE_PARAMS

\
* STRIP_PARAMS
G3, ASCII

DATA INDIR_DATA
G3, ASCll G3, ASCII, DCX, TIFF

_BOP

Figure 3. Creating Infopkt Streams that Transmit Facsimiles

March 2020

Infopkt Structure

Every infopkt consists of a header and data. The 4-byte header
consists of a type code and a length. The type code defines the
infopkt type, and the length field indicates the total length of the
infopkt, including the header. Data consists of raw data, formatting
parameters or, in the case of indirect infopkts, pointers to other files.

The maximum length of an individual infopkt is 30,000 bytes, but
Dialogic recommends limiting the size to approximately 1K. This
limit affects the size of infopkts only and has no effect on the size of a
fax document, since large fax documents are simply converted to
multiple infopkts within an infopkt stream.

When indirect infopkts point to other infopkt stream files, the
maximum nesting depth is three. All file names that occur in
indirect infopkts must be O-terminated.

The infopkt.h file, located in the inc subdirectory, contains the
definitions of the infopkt structures.

See Appendix E in Volume 6 of the Dialogic® Brooktrout® Bfv API
Reference Manual for the parameter values and defaults of each tag
type infopkt.

Speech Infopkt Parameters

The INFOPKT_SPEECH_ PARAMETERS infopkt defines the speech
parameters for infopkt-formatted speech files. These parameters
include the coding format, the compressed sample rate, the number
of bits per sample, the analog front end (afe) rate, and the data
format. In infopkt streams made up of simple speech files, this
infopkt begins the infopkt stream. In infopkt streams made up of
indexed prompt files, it begins each new speech file embedded in the
stream.

Applications use the BfvSpeechRecord function to record speech
in infopkt format (see the Dialogic® Brooktrout® Bfv API Reference
Manual, Volume 3 for a complete description). Valid settings for the
data coding format, compressed sample rate for playback, and
number of bits per sample are found with the BfvSpeechRecord
function.

March 2020

49

Fax Infopkt Parameters

The T.30 protocol requires two communicating fax machines to agree
on several transmission parameters at the beginning of a facsimile
transmission. These transmission parameters include the bit rate,
scan time, coding scheme, and the basic document format
parameters — vertical resolution, page width, and page length. The
least capable fax machine determines the values of these
parameters; both fax machines adjust to the final values.

Two infopkts:

INFOPKT_T30_PARAMETERS
INFOPKT_DOCUMENT_ PARAMETERS

affect the parameters that are negotiated during the T.30 protocol
handshaking procedure.

The INFOPKT_T30_PARAMETERS infopkt specifies the desired values
of the transmission parameters. Normally the default values are
used, but INFOPKT_T30_PARAMETERS is useful, for example, for
setting a lower bit rate.

The INFOPKT_DOCUMENT_PARAMETERS infopkt sets the document
related parameters: vertical resolution, length, and width (only the
vertical resolution is programmable). These parameters format the
fax data that is sent out.

INFOPKT_DOCUMENT_PARAMETERS is required and specifies the
desired resolution. If it appears in the midst of an infopkt stream,
both machines might renegotiate to the new parameter values.

While document parameters define an entire fax document sent,
page parameters define an entire page only, and strip parameters
define horizontal strips of data within a page.

For ASCII data, there are page parameters and strip parameters.
For G3 data, there are strip parameters. Because page formatting
elements (top and bottom margins, etc.) are inherent in G3 data;
there are no separate page parameters.

The INFOPKT_PAGE_PARAMETERS infopkt defines the ASCII page
parameters, which apply only to pages. Its use is optional, and when
it is not included with ASCII data infopkts, the module uses the
default values (see Appendix E in Volume 6 of the Dialogic®
Brooktrout® Bfv APl Reference Manual for default values).

March 2020

50

The strip parameters infopkts:

INFOPKT_ASCII_STRIP_PARAMETERS
INFOPKT_G3_STRIP_PARAMETERS

define the actual strips of data that make up a page and must
precede an ASCII or G3 data type infopkt only to change the default
or previously applied strip parameter values (see Volume 6,
Appendix E in the Dialogic® Brooktrout® Bfv APl Reference Manual
for default values). Dialogic, however, recommends that you include
a strip parameter infopkt whenever you define a strip, even if the
default values are appropriate for the strip. Strip parameters
include the basic format of the data (that is, ASCII or G3 data) and
presentation parameters such as vertical resolution, width, and, in
the case of ASCI|I, left and right margins.

Strip parameters ensure that the strip data is sent out properly and
the received fax is displayed with the proper proportions. The
module converts strip data to the proper vertical resolution before
transmitting it.

For example, if the T.30 document resolution is set to fine resolution,
and a G3 strip is in normal resolution, the firmware converts the
data to fine resolution, replicating each line. Likewise, if the T.30
document resolution is set to normal resolution, and a G3 strip is in
fine resolution, the firmware converts the data to normal resolution,
removing every other line. If the T.30 document resolution and a
G3 strip resolution are the same, the module transmits the data
as-is. The vertical resolution of the strip data informs the module
when to convert data and how to convert it.

When ASCII strip data is sent to the module, the current vertical
resolution parameter is set to normal, even if an
INFOPKT_ASCII_STRIP_PARAMETERS infopkt is inserted into the
infopkt stream. Thus the resolution of any G3 strip data,
encountered later in the infopkt stream, is also assumed to be
normal, unless otherwise specified by an accompanying
INFOPKT_G3_STRIP_PARAMETERS infopkt.

When two consecutive G3 strips of data are sent to the module, an
INFOPKT_ G3_STRIP_PARAMETERS infopkt must be inserted
between them. Since each G3 strip data ends with an RTC marker
(six consecutive end-of-line codes) that is interpreted by the module
as the end of the strip of data, an INFOPKT_G3_STRIP_PARAMETERS
infopkt is required to indicate the beginning of the second G3 strip.

March 2020

51

When a single G3 strip consists of multiple G3 infopkts, do not insert
an INFOPKT_G3_STRIP_PARAMETERS infopkt between the
G3 infopkts.

Figure 4 illustrates how an electronic mail document (ASCII),
accompanied by a cover sheet, a letterhead, and a signature, could be
delivered to a fax machine.

Fax Document,
Page 1

cover sheet

lettrhed.g3 letterhead

7
Doc_Parameters Dialogic Corp
G3_Strip_ Parameters
G3 (data; cover sheet)
lettrbod.asc
) letter body
BOP (Beginning of page) The TRxxx series =l
of fax/voice boards
[G3_Strip_Parameters are now available...
Indir G3(lettrhed.g3)
[Asciifstripfparameters sign.g3

Indir Ascii(Lettrbod.asc)

[GS?Striprarameters | |yl President signature
o

Indir G3(sign.g3)

Infopkt Stream Fax Document,
Page 2

Figure 4. Conversion of a Partial Infopkt Stream to a Fax
Document

Part of the infopkt stream, a file containing a series of infopkts that
contains this fax example, is shown below:

INFOPKT_DOCUMENT_ PARAMETERS

(Tag containing new page composition parameters; a fax infopkt
stream must begin with this infopkt type)

INFOPKT_G3_STRIP_PARAMETERS

(Parameter Structure)

March 2020

52

This two-page document contains a G3 fax document as a cover page.
INFOPKT_G3
(Cover sheet; G3 data)

It is followed by a page boundary tag,
INFOPKT_BEGINNING_OF_PAGE. The data for the cover sheet is
stored in the infopkt stream.

INFOPKT_BEGINNING_OF_PAGE
(Cover sheet is on its own page)
INFOPKT_G3_STRIP_PARAMETERS
(Parameter Structure)

The second page starts with a G3 document containing the
letterhead. It is stored in a separate file.

INFOPKT_INDIR_G3

(Document letterhead; G3 file name)
INFOPKT_ASCII_STRIP_PARAMETERS
(Parameter Structure)

The next strip of the second page is ASCII data which is also stored
in a separate file.

INFOPKT_INDIR_ASCIT
(Contents of E-Mail message; ASCII file name)
INFOPKT_G3_STRIP_PARAMETERS

(Parameter Structure)

The second page ends with G3 data, contains the signature, and is
also stored in a separate file.

INFOPKT_INDIR_G3
(Signature data is in infopkt structure; G3 data)

The bulk of most infopkt files are types INFOPKT_G3 and
INFOPKT_ ASCII. Two files containing infopkts are concatenated.

March 2020 53

2 - Developing
Applications Using the Bfv
API

This chapter describes how to develop applications with the
Brooktrout Fax Software.

The chapter has the following sections:

m Developing a Voice Application on page 55
m Using Prompt Files on page 57

m Developing a Fax Application on page 59

March 2020

Developing a Voice Application

Recording and Playing Voice

The following steps for recording and playing back speech are
demonstrated:

m How to record voice

m How to play back previously recorded voice

These steps are the same for all supported operating systems.

To record and then play speech back, first select the voice channel on
which you want to record your message. Then, use the voice.c sample
program, included on your distribution CD, to record and play back
speech.

March 2020

55

Recording Voice

1.

Prepare channel 2 to record your message:

voice -u 2 -r voice.ips

The command voice invokes the voice.c program, whose

arguments include:

Arguments
-c num Call the given number, else wait for ring.
-f Specify record coding format; use the number of
the format or one of the following names:
adpcm 1
adpcm32
adpcm24
pcm_ulaw 2
pcm_ulaw64
pcm_ulaw4d8
pcm_ulaw88
pcm_alaw 3
pcm_alaw64d
pcm_alawd8
pcm_alaw88
g723-1 7
g723-1-53
g723-1-63
g729-a 8
sx7300 9
sx9600 10
gsm_610 14
gsm_660 15
-1 Loop forever, sending or receiving.
-n secs Specify recording time in seconds.
-p Play
-r Record (default 10 seconds).

-u unitnum Use specified channel.

The -u 2 argument selects channel 2 as the recording channel
and the -r argument places channel 2 in record mode. Voice.ips
is the speech infopkt stream file in which to store the voice
message. The channel waits for an incoming call.

March 2020

56

2. Dial the phone number of the channel you selected. sure to have
all the necessary cables connected for the channel to receive a
call.

The voice.c program does not indicate when to begin recording.
Begin recording when the call is connected (when you no longer
hear ringing).

Playing Back the Voice Message

» Request that a channel (0 in the example) play back your
previously recorded message stored in voice.ips.

1. At the system prompt, type:

voice -u 0 -p voice.ips
2. Dial the phone number of the channel. You should hear your
recorded message.

Using Prompt Files

Prompt files are infopkt files that contain many individual speech
phrases in a single file. Each phrase is a partial or complete prompt
in infopkt format followed by an INFOPKT_END_OF_SPEECH infopkt
with mode value 1. The prompt file starts with an

INFOPKT_ PROMPT_MAP infopkt, which contains file offsets to each
individual phrase.

The Bfv API contains functions that open and close a prompt file and
play individual phrases stored in it. For example, after an
application opens a Brooktrout prompt file, it can call the
BfvPromptPlay function to play any individual phrase, or it can
call the BfvPromptPlay function multiple times to concatenate
phrases and create a complete prompt.

Using Brooktrout prompt files provides two advantages. Since all of
the prompts are stored in a single file, tracking and maintaining
prompts is easier. And because you can combine phrases to create
complete prompts, you can reduce the amount of disk space needed
for overall speech storage.

March 2020

57

Using the mkprompt Utility

The mkprompt utility converts multiple infopkt files into a
Brooktrout prompt file and updates an existing Brooktrout prompt
file by adding new phrases or modifying existing phrases.

When you create a Brooktrout prompt file, the mkprompt utility
automatically assigns each infopkt file a phrase number,
sequentially, in the order that you enter each file name at the
command line. The mkprompt utility always assigns the phrase
number 0 to the first infopkt file you enter.

When you update a Brooktrout prompt file, you assign a phrase
number to each infopkt file you are adding to the existing Brooktrout
prompt file.

Since the mkprompt utility cannot return phrase numbers of
individual prompt files in a Brooktrout prompt file, be sure to keep
your own record. You might need this information when you update
your prompt file.

Both the mkprompt utility and the Bfv API permit you to include the
text of each phrase in the Brooktrout prompt file. Create an infopkt
file for each phrase in which the first infopkt in the file contains the
text annotation and the remaining infopkts contain the speech that
make up the phrase. The mkprompt utility treats the whole file as a
phrase infopkt, and the BfvPromptPlay function skips over the
annotated text.

Creating a New Prompt File

To create a new Brooktrout prompt file, at the command line type:

mkprompt prompt_file [phrasel.pkt phrase2.pkt...]
Where:

prompt_file Specifies the name of the prompt file to create.
phrasel.pkt, Provides the names of the infopkt-formatted.
phrase2.pkt, ... Prompts filesin the order in which you enter

them at the command line.

The mkprompt utility automatically assigns phrase 0 to the file you
enter as phrasel.pkt and sequentially numbers any additional files
in the order that you enter them.

March 2020

58

Updating an Existing Prompt File

To update an existing Brooktrout prompt file, at the command line

type:
mkprompt -u phrase_num prompt_file phrase.pkt:
Where:
-u Specifies the update command.
phrase_num Provides the index number to assign the

infopkt-formatted input file.
prompt_file Provides the name of the prompt file.

phrase.pkt Provides the name of the infopkt-formatted prompt
file to add to the prompt file.

The mkprompt utility opens the existing Brooktrout prompt file and
append the new phrase if the phrase number you specify is new or
replace the old phrase whose phrase number matches the phrase
number you specify.

Developing a Fax Application

Sending and Receiving a Fax

The following are the step-by-step instructions for transmitting and
receiving a fax:

m How to create an infopkt stream using the mkinfopk utility.

m How to send a fax (an infopkt stream file) from one channel to
another channel in your system.

®m How to send a fax from an external fax machine to one channel
in your system. This same fax is then transmitted back to the
same fax machine from the same channel in your system.

March 2020 59

Sending a Fax from One Channel to Another

» Use the fax sample program to send a fax from one channel to

another in your system.
1. Prepare channel 1 to receive a fax:

fax -u 1 -r recfile.ips
fax invokes the sample fax program with the following

arguments:

-u Specifies that the following number is the
number of the channel that receives a fax (in this
case channel 1 is used).

-r Places the channel (1) in receive mode.

recfile.ips Creates a file, recfile.ips, in which to receive a
fax.

The channel is now set to receive a fax and is waiting for an
incoming call.

2. Send a fax from channel 0 to channel 1.
In a second window, type:

fax -u 0 -s wphonenum fax.ips

-u Specifies that the following number is the
number of the channel that sends a fax (in this
case channel 0 is used).

-s Places the channel (0) in send mode.

w m In robbed-bit T1 TDM environments, checks
the signaling if w is the first character of the
string.

m In E&M immediate mode, causes the channel
to wait and see if the T1 slot is free.

m In E&M wink mode, causes the channel to
wait for a wink signal from the remote side.

m Anywhere else in the string, waits for dial
tone.

phonenum Specifies the phone number of the channel to
receive the fax (in this case channel 1).

fax.ips Sends the infopkt stream file fax.ips previously
created with the mkinfopk utility. Refer to The
Infopkt Stream on page 44

March 2020

60

Sending a Fax to a Channel from an External Fax
Machine

Use the fax.c sample program to send a fax from an external fax
machine to a channel in your system. Then send the same fax back to
the same fax machine from the same channel in your system.

1.

Prepare channel 1 to receive a fax as you did in the previous
example. Use the same input file name recfile.ips used to send a
fax from one channel to another in the same system:

fax -u 1 -r recfile.ips

Channel 1 is now set to receive a fax and is waiting for an
incoming call.

At the fax machine, insert the sample fax in the fax machine and
call the channel's (channel 1) phone number in the normal way.
At the tone send your sample fax.

Wait for the selected channel to receive the sample fax.
Send the received fax back to the fax machine:
fax -u 1 -s wphonenum recfile.ips

This time, phonenum is the phone number of the external fax
machine.

You can examine the structure of the infopkt stream recfile.ips
before you transmit it back to the fax machine.

decode recfile.ips

March 2020

61

Using Bfv API Fax Functions

The following sections show how to send and receive facsimiles using
the high- and low-level function calls, noninfopkt function calls, and
TIFF-F function calls. It also shows how to send and receive
facsimiles in MR and MMR format, access infopkt streams and
TIFF-F fax files from an application, combine data on a single page
using TIFF-F fax files, interpret fax status information from an
application, and how to use prompt files.

The following declarations are assumed to be in effect for all
examples.

struct args_line_admin args_admin;
struct args_telephone args_tel;

struct args_speech args_speech;

struct args_fax args_fax;

struct args_fax_t30_params args_t30;
struct args_fax_page_params args_pade;
struct args_fax strip_params args_strip;
struct args_tone args_tone;

struct args_download args_download;
struct args_dh args_dh;

struct args_intlimit args_intlimit;
struct args_infopkt args_infopkt;
struct args_tiff args_tiff;

struct args_cc args_cc

Using High- and Low-Level Functions

The Bfv API library contains both high- and low-level function calls
(see Table 1 on page 38). Several low-level function calls are
combined into one high-level function to provide a quick and easy
method to send or receive a facsimile.

The low-level functions, on the other hand, provide more flexibility
and functionality than the higher level function calls.

Sending a Fax Using High-Level Function Calls A typical way to
send a fax using the high-level fax function calls is demonstrated
below. Each function is presented in sequential order, and the action
it performs is described beneath it.

BT_ZERO (args_admin) ;
args_admin.unit = unit;
1lp = BfvLineAttach (&args_admin) ;

March 2020

62

Attaches to a free channel and gets a line pointer.

args_admin.config file_name = "usrcnfig.cfg";
BfvLineReset (1lp, &args_admin) ;

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named, usrcnfig.cfg.

BT_ZERO (args_infopkt) ;
args_infopkt.fname = name;
args_infopkt.fmode = "r";

ips = BfvInfopktOpen (&args_infopkt) ;

Opens the infopkt-formatted file called name for reading and
transmission.

BT_ZERO (args_tel) ;

args_tel .phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.func = userfunc;

args_tel.arg = userarg;
BfvLineOriginateCall (1lp, &args_tel) ;

Dials the phone number, monitors call progress, calls the user
function to optionally decide when to terminate call progress.

BT_ZERO (args_fax) ;
args_fax.s_ips = ips;
args_fax.local_id = local_id;
BfvFaxSend (lp, &args_fax) ;

Transmits documents based on an infopkt stream.

BT _ZERO (args_infopkt) ;
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt) ;

Closes the infopkt stream file after the file is sent.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin) ;

Frees all memory for the attached line and closes the device.

Receiving a Fax Using High-Level Function Calls A typical way to
receive a fax using the high-level fax function calls is demonstrated
below. Each function is presented in sequential order, and the action
it performs is described beneath it.

BT ZERO (args_admin) ;
args_admin.unit = unit;
lp = BfvLineAttach (&args_admin) ;

March 2020 63

Attaches to a free channel and gets a line pointer.

args_admin.config file_name = "usrcnfig.cfg";
BfvLineReset (1lp, &args_admin) ;

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO (args_infopkt) ;
args_infopkt.fname = name;
args_infopkt.fmode = "w";

ips = BfvInfopktOpen (&args_infopkt) ;

Opens the infopkt-formatted file called name for writing.

BT_ZERO (args_tel) ;
args_tel.timeout = O0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.

BfvLineAnswer (lp, &args_tel);

Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO (args_fax) ;
args_fax.r_ips = ips;
args_fax.local_id = local_id;
BfvFaxReceive (lp, &args_fax);

Receives fax pages and puts them into the infopkt stream ips.

BT ZERO (args_infopkt) ;
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt) ;

Closes the infopkt stream file after the file is sent.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin) ;

Closes the infopkt stream file after the file is received.

BT ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin);

Frees all memory for the attached line and closes the device.

March 2020

64

Sending a Fax Using Low-Level Infopkt Function Calls One way to
send a fax using the low-level infopkt fax function calls is
demonstrated below. Each function is presented in sequential order,
and the action it performs is listed beneath it.

BT ZERO (args_admin) ;
args_admin.unit = unit;
lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a line pointer.

args_admin.config file_name = "usrcnfig.cfg";
BfvLineReset (1p, &args_admin) ;

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO (args_infopkt) ;

args_infopkt.fname = name;

args_infopkt.fmode = "r";

ips = BfvInfopktOpen (&args_infopkt) ;

Opens the infopkt-formatted file called name for reading and
transmission.

BT_ZERO (args_cc) ;

args_cc.phonenum = "w7814499009";
args_cc.call_protocol_code = CALL_PROTOCOL_ FAX;
BfvCallSetup(lp, &args_cc) ;

Dials the phone number

BT_ZERO (args_cc) ;
args_cc.call_protocol_code = CALL_PROTOCOL_ FAX;
BfvCallWaitForComplete (1lp, &args_cc) ;

Monitors call progress, calls the user function to optionally decide
when to terminate call progress.

BT_ZERO (args_fax) ;
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(1lp, &args_fax) ;

Sets the local id.

BT_ZERO (args_fax) ;

args_fax.s_ips = ips;

BfvFaxBeginSend (lp, &args_fax);

Begins the handshaking procedure between the two machines.
BfvFaxGetRemoteInfo (lp, &args_fax);

Waits for the called machine to send its ID and capabilities.

BfvFaxWaitForTraining (lp, &args_fax);

March 2020

65

Waits for the completion of the Phase B handshaking procedure.

for (;;)
{
BT_ZERO (args_fax) ;

args_fax.s_ips = ips;
if ((ret = BfvFaxNextPage(lp, &args_fax)) <= 0)
break;

BfvFaxSendPage (1lp, &args_fax) ;
}

Loops through the infopkt stream, getting the next page and
transmitting it to the driver.

BfvFaxEndOfDocument (1p, &args_fax) ;
Finishes up when the infopkt stream is exhausted.
BT ZERO (args_infopkt) ;

args_infopkt.ips = ips;

BfvInfopktClose (&args_infopkt) ;

Closes the infopkt stream file after the file is sent.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin) ;

Frees all memory for the attached line and closes the device.

You can replace some low-level functions with a high-level function,

for example:

BfvCallSetup These low level functions are

BfvCallWaitForComplete replaced with the high level
function BfvLineOriginateCall.

BfvFaxSetLocallD These low level functions are

BfvFaxBeginSend replaced with the high level

BfvFaxGetRemotelnfo function BfvFaxSend.

BfvFaxWaitForTraining

BfvFaxSendPage

BfvFaxEndOfDocument

Receiving a Fax Using Low-Level Infopkt Function Calls One way
to receive a fax using the low-level infopkt fax function calls is
demonstrated below. Each function is presented in sequential order,
and the action it performs is described beneath it.

March 2020 66

BT_ZERO (args_admin) ;
args_admin.unit = unit;
1lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a BTLINE pointer.

args_admin.config file_name = "usrcnfig.cfg";
BfvLineReset (lp, &args_admin) ;

Resets the channel and sets the user-configured options in the
user-defined configuration file usrcnfig.cfg.

BT_ZERO (args_infopkt) ;
args_infopkt.fname = name;
args_infopkt.fmode = "w";

ips = BfvInfopktOpen (&args_infopkt) ;

Opens the infopkt-formatted file, name, to store the received fax.

BT_ZERO (args_tel) ;
args_tel.timeout = O0L;
BfvLineWaitForCall (1lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.

BfvLineAnswer (1lp, &args_tel);
Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO (args_fax) ;
args_fax.local_id = "Id_string";
BfvFaxSetLocalId(lp, &args_fax) ;

Sets the local ID to transmit to the sending machine.

BT_ZERO (args_fax) ;
BfvFaxBeginReceive (lp, &args_fax);

Begins the Phase B handshaking procedure.
BfvFaxGetRemoteInfo (lp, &args_fax);
Waits for the remote to send its ID and capabilities.

Note: The previous phone call is terminated by the application if the
remote fax's ID does not match the expected value.

BfvFaxWaitForTraining (lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

BT_ZERO (args_fax) ;

args_fax.r_ips = ips;

BfvFaxReceivePages (1p, &args_fax) ;

Receives and writes the fax data to the infopkt stream file pointed to
by ips.

March 2020

67

BT_ZERO (args_infopkt) ;
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt) ;

Closes the infopkt stream file after the file is sent.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin) ;

Frees all the memory for the attached line and closes the device.

You can replace some low-level functions with a high-level function,
for example:

BfvFaxBeginReceive These low level functions are
BfvFaxGetRemotelnfo replaced with the high level function
BfvFaxSetLocalld BfvFaxReceive.

BfvFaxWaitForTraining
BfvFaxReceivePages

See the applications in the sample application directory for more
detailed information.

Sending a Fax Using Function Calls for
Noninfopkt-Formatted Raw G3 Files

One way to send a fax using function calls for noninfopkt-formatted
raw G3 files is demonstrated below. Each function is presented in
sequential order, and the action it performs is described beneath it.

This example sends a two-page fax whose page and strip data are
stored in noninfopkt-formatted files. The first page consists of a
Group 3 letterhead (Itrhd.g3), a body in ASCII (main.txt), and a
signature file in Group 3 (sig.G3). The second page is an ASCII file
(memo.txt).

BT_ZERO (args_admin) ;
args_admin.unit = unit;
1lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a line pointer.

args_admin.config file _name = "usrcnfig.cfg";
BfvLineReset (1lp, &args_admin) ;

March 2020

68

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO (args_tel) ;

args_tel .phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.func = userfunc;

args_tel.arg = userarg;
BfvLineOriginateCall (1p, &args_tel) ;

Dials the phone number, monitors call progress, calls the user
function to optionally decide when to terminate call progress.

BT_ZERO (args_t30) ;
args_t30.bit_rate = BITRATE_14400;
args_t30.scan_time = SCANTIME_O;
BfvFaxT30Params (1p, &args_t30) ;

Configures the channel's maximum transmission rate. This function
is optional.

BT_ZERO (args_page) ;
args_page.top_margin = 0;
args_page.bottom_margin = 0;
args_page.length = 1143;
args_page.ascii_pad = 1;
args_page.image_pad = 0;
args_page.image_break = 0;
args_page.image_margin = 0;
BfvFaxPageParams (1p, &args_page) ;

Sets the page parameters: no top or bottom margins, a page length of

1143 (normal) G3 lines, no padding of short ASCII pages, no padding
of short images, no breaking of images, and no margins for images.

BT_ZERO (args_fax) ;
args_fax.resolution = RES_200H_200V;
args_fax.width = WIDTH_A4;
BfvFaxBeginSendRaw (lp, &args_fax) ;

Begins the handshaking procedure and indicates that the first page
is in fine resolution and has A4 width.

BfvFaxGetRemoteInfo (lp, &args_fax);

Waits for the called machine to send its ID and capabilities.
BfvFaxWaitForTraining (lp, &args_fax);

Waits for the completion of the Phase B handshaking procedure.

BT _ZERO (args_strip);

args_strip.fmt = DATA_G3;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams (1lp, &args_strip) ;

March 2020

69

Sets the G3 strip parameters for the G3 strip Itrhd.g3.

BT_ZERO (args_fax) ;
args_fax.fname = "ltrhd.g3";
args_fax.fmt = DATA_G3;
BfvFaxSendFile (lp, &args_fax);

Sends the G3 letterhead data file Itrhd.g3 to the driver.

BT _ZERO (args_strip);

args_strip.fmt = DATA ASCII;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
args_strip.left_margin = 5;
args_strip.right_margin = 0;
args_strip.line_spacing = 2;
args_strip.eof_char = 0xla;
BfvFaxStripParams (1lp, &args_strip) ;

Sets the ASCII parameters for the ASCII strip main.txt, since it
differs from the default.

BT_ZERO (args_fax) ;
args_fax.fname = "main.txt";
args_fax.fmt = DATA_ASCII;
BfvFaxSendFile (lp, &args_fax);

Sends the ASCII text body file main.txt to the driver.

BT ZERO (args_strip);

args_strip.fmt = DATA_G3;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams (1lp, &args_strip) ;

Sets the G3 strip parameters for the G3 strip sig.G3.

BT_ZERO (args_fax) ;
args_fax.fname = "sig.g3";
args_fax.fmt = DATA_G3;
BfvFaxSendFile (lp, &args_fax);

Sends the G3 signature file sig.G3 to the driver.

BT_ZERO (args_fax) ;
args_fax.resolution = RES_200H_100V;
args_fax.width = WIDTH_A4;
BfvFaxNextPageRaw (lp, &args_fax);

Sends an end-of-page command to the driver and indicates that
another page (normal resolution and A4 width) follows.

BT_ZERO (args_page) ;
args_page.top_margin = 5;
args_page.bottom_margin = 5;

March 2020

70

args_page.length = 1143;

args_page.ascii_pad = 0;

BfvFaxPageParams (1p, &args_page) ;

Sets the page parameters for this page since they differ from those of
the first page.

March 2020

71

BT_ZERO (args_fax) ;
args_fax.fname = "memo.txt";
args_fax.fmt = DATA_ASCII;
BfvFaxSendFile (lp, &args_fax);

Sends the ASCII text file, memo.txt the only file on the second page,
to the driver.

BfvFaxEndOfDocument (1p, &args_fax) ;

Indicates to the driver that the second page is the last page of the
transmission.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Receiving a Fax Using Function Calls for
Noninfopkt-Formatted Raw G3 Files

One way to receive a fax using function calls for
noninfopkt-formatted raw G3 files is demonstrated below. Each
function is presented in sequential order, and the action it performs
is described beneath it.

This example receives fax data into a buffer only and does not
include instructions for further processing the contents of the buffer.

BT ZERO (args_admin) ;
args_admin.unit = unit;
1lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a BTLINE pointer.

args_admin.config file_name = "usrcnfig.cfg";
BfvLineReset (1p, &args_admin) ;

Resets the channel and sets the user-configured options in the
user-defined configuration file usrcnfig.cfg.

BT_ZERO (args_tel) ;
args_tel.timeout = 0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.

March 2020

72

BfvLineAnswer (lp, &args_tel);
Answers the incoming call and sets the line state to CONNECTED

BT_ZERO (args_fax) ;
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(1lp, &args_fax) ;

Sets the local ID to transmit to the sending machine.

BT_ZERO (args_fax) ;
BfvFaxBeginReceive (lp, &args_fax);

Begins the Phase B handshaking procedure.
BfvFaxGetRemoteInfo (lp, &args_fax);
Waits for the remote to send its ID and capabilities.

Note: The previous phone call is terminated by the application if the
remote fax machine's ID does not match the expected value.

BfvFaxWaitForTraining (lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

do

{
BT_ZERO (args_fax) ;
args_fax.buf = buf;
args_fax.size = size;

/* receive data into buffer */
if (BfvFaxReceiveData (lp, &args_fax) <= 0)
break;

/* Process buffer contents */
Process (buf) ;

}
Keeping track of the resolution of each page is the application's
responsibility.

When the function returns a 0 at exit from the loop, the application
must determine, from the value of args_ fax.expect_another, if
there is another page to receive.

BfvFaxEndReception(lp, &args_fax);

Call this function when there are no more pages to receive.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin);

March 2020

73

Frees all the memory for the attached line and closes the device.

Sending a Fax Using Calls for TIFF-F Files

One way to send a fax using function calls for TIFF-F files is
demonstrated below. Each function is presented in sequential order,
and the action it performs is described beneath it.

BT_ZERO (args_admin) ;
args_admin.unit = unit;
1lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a line pointer.

args_admin.config file name = "usrcnfig.cfg";
BfvLineReset (1lp, &args_admin) ;

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO (args_tiff);
args_tiff.fname = name;
args_tiff.fmode = "r";

tp = BfvTiffOpen (&args_tiff);

Opens the TIFF-F file name for reading and transmission.

BT_ZERO (args_tel) ;

args_tel .phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.func = userfunc;

args_tel.arg = userarg;
BfvLineOriginateCall (1p, &args_tel) ;

Dials the phone number, monitors call progress, calls the user
function to optionally decide when to terminate call progress.

BT_ZERO (args_fax) ;
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(lp, &args_fax) ;

Sets the local id.

BT_ZERO (args_fax) ;

args_fax.s_tp = tp;
BfvFaxBeginSendTiff (1p, &args_fax) ;

Begins the Phase B handshaking procedure.
BfvFaxGetRemoteInfo (lp, &args_fax);

Waits for the called machine to send its ID and capabilities.

BfvFaxWaitForTraining (lp, &args_fax);

March 2020

74

Waits for the completion of the Phase B handshaking procedure.

for (;:)

{
BT_ZERO (args_fax) ;
args_fax.s_tp = tp;

args_fax.combine = 0;
if (BfvFaxNextPageTiff (1lp, &args_fax) <= 0)
break;

BT_ZERO (args_fax) ;
args_fax.s_tp = tp;
if (BfvFaxSendPageTiff (1lp, &args_fax) < 0)
break;
}

Loops through the TIFF-F file, getting the next page and sending it
to the driver.

BfvFaxEndOfDocument (1p, &args_fax) ;

Finishes up when the TIFF data is exhausted.

BT_ZERO (args_tiff);
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

Closes the TIFF-F file after the file is received.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin) ;

Frees all the memory for the attached line and closes the device.

Receiving a Fax Using Calls for TIFF-F Files

One way to receive a fax using function calls for TIFF-F files is
demonstrated below. Each function is presented in sequential order,
and the action it performs is described beneath it.

BT_ZERO (args_admin) ;
args_admin.unit = unit;
lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a BTLINE pointer.

March 2020

75

args_admin.config file _name = "usrcnfig.cfg";
BfvLineReset (1lp, &args_admin) ;

Resets the channel and sets the user-configured options in the
user-defined configuration file named usrcnfig.cfg.

BT_ZERO (args_tiff);
args_tiff.fname = name;
args_tiff.fmode = "w";

tp = BfvTiffOpen (&args_tiff);

Opens the TIFF-F file name to store the received fax.

BT_ZERO (args_tel) ;
args_tel.timeout = O0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.
BfvLineAnswer (lp, &args_tel);

Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO (args_fax) ;
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(1lp, &args_fax) ;

Sets the local ID to transmit to the sending machine.

BT_ZERO (args_fax) ;
BfvFaxBeginReceive (lp, &args_fax);

Begins the Phase B handshaking procedure.

BfvFaxGetRemoteInfo (lp, &args_fax);
Waits for the remote to send its ID and capabilities.

BfvFaxWaitForTraining (lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

do
{
BT_ZERO (args_fax) ;
args_fax.r_tp = tp;
}
while (BfvFaxRcvPageTiff (1lp, &args_fax) > 0);

Receives and writes the fax data to the TIFF-F file pointed to by tp.
BfvFaxEndReception (lp, &args_fax);

After the last page is received, waits for the T.30 handshaking
confirmation sequence to complete.

March 2020

76

BT_ZERO (args_tiff);
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

Closes the TIFF file after the file is received.

BT ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Receiving and Storing a Fax in MMR or
MR Format

Receiving an Infopkt-Formatted Fax and Storing it in MMR Format

A typical way to receive a fax that is made up of infopkts and store it
in MMR format is demonstrated below. Each function is presented in
sequential order, and the action it performs is described beneath it.

When MR or MMR facsimiles are received in infopkt format, the
data format type specification is automatically included through the
g3strppkt infopkt structure. Retransmission of these infopkt files
is done the same way transmission of MH files is done (see Sending a
Fax Using Low-Level Infopkt Function Calls on page 65 for detailed
instructions).

The application controls the format of images received from the
channel; this format is independent of the format of data received by
the channel.

BT_ZERO (args_admin) ;
args_admin.unit = unit;
1lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a line pointer.

args_admin.config file name = "usrcnfig.cfg";
BfvLineReset (1lp, &args_admin) ;

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT ZERO (args_infopkt) ;
args_infopkt.fname = name;
args_infopkt.fmode = "w";

ips = BfvInfopktOpen (&args_infopkt) ;

Opens the infopkt-formatted file called name to store the received
fax.

March 2020

77

BT_ZERO (args_tel) ;
args_tel.timeout = O0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs

BfvLineAnswer (lp, &args_tel);
Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO (args_fax) ;
args_fax.fmt = FMT_MMR_ALIGN_MSB;
BfvFaxSetReceiveFmt (1p, &args_fax) ;

Sets the format used to pass the received fax data from the channel
to the computer. In this example, MMR data format — byte aligned,
most significant bit first — is specified. See the fmt parameter
description for detailed information on all of the data format types
that are available through BfvFaxSetReceiveFmt.

BT_ZERO (args_fax) ;
args_fax.r_ips = ips;
args_fax.local_id = local_id;
BfvFaxReceive (lp, &args_fax);

Receives fax pages and puts them into the infopkt stream ips.

BT _ZERO (args_infopkt) ;
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt) ;

Closes the infopkt stream file after the file is received.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin) ;

Frees all the memory for the attached line and closes the device.
Receiving a Noninfopkt-Formatted Fax and Storing It in MR Format

A typical way to receive a fax that is made up of noninfopkts and
store it in MR data format is demonstrated below. Each function is
presented in sequential order, and the action it performs is described
beneath it.

BT_ZERO (args_admin) ;
args_admin.unit = unit;
1lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a BTLINE pointer.

March 2020

78

args_admin.config file _name = "usrcnfig.cfg";
BfvLineReset (1lp, &args_admin) ;

Resets the channel and sets the user-configured options in the
user-defined configuration file usrcnfig.cfg.

BT_ZERO (args_tel) ;
args_tel.timeout = 0OL;
BfvLineWaitForCall (lp, &args_tel);

Waits for the detection of an incoming call.

BfvLineAnswer (lp, &args_tel);
Answers the phone line by going off-hook.

BT_ZERO (args_fax) ;
args_fax.fmt = FMT_MR_UNALIGN_MSB;
BfvFaxSetReceiveFmt (1p, &args_fax) ;

Sets the format used to pass the received fax data from the channel
to the computer. In this example, MR data format — byte unaligned,
least significant bit first — is specified.

See the fmt parameter description for detailed information on all of
the data format types that are available through
BfvFaxSetReceiveFmt.

BT_ZERO (args_fax) ;
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(lp, &args_fax) ;

Sets the local ID to transmit to the sending machine.

BT_ZERO (args_fax) ;
BfvFaxBeginReceive (lp, &args_fax);

Begins the Phase B handshaking procedure.
BfvFaxGetRemoteInfo (lp, &args_fax);
Waits for the remote end to send its ID and capabilities.

Note: The previous phone call is terminated by the application if the
remote fax machine's ID does not match the expected value.

BfvFaxWaitForTraining (lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

do

{
BT_ZERO (args_fax) ;
args_fax.buf = buf;
args_fax.size = size;

March 2020

79

/* receive data into buffer */
if (BfvFaxReceiveData (lp, &args_fax) <= 0)
break;

/* Process buffer contents */

Process (buf) ;
}
Keeping track of the resolution and the data format (previously set
by BfvFaxSetReceiveFmt) of each page, is the application's
responsibility.

When the function returns a 0 at exit from the loop, the application
must determine, from the value of args_fax.expect_another, if
there is another page to receive.

BfvFaxEndReception (lp, &args_fax);
Call this function when there are no more pages to receive.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.
Sending a Noninfopkt-Formatted Fax Stored in MMR Format

One way to send a fax using function calls for noninfopkt-formatted
raw G3 files is demonstrated below. Each function is presented in
sequential order, and the action it performs is described beneath it.

This example sends a one-page fax whose page and strip data are
stored in noninfopkt-formatted files. The page consists of a Group 3
document (mmrdoc.g3) that is stored on disk in MMR format.

The application controls the format of images sent to the channel,
this format is independent of the format of data transmitted by the
channel.

BT ZERO (args_admin) ;
args_admin.unit = unit;
lp = BfvLineAttach (&args_admin) ;

Attaches to a free channel and gets a line pointer.

args_admin.config file_name = "usrcnfig.cfg";
BfvLineReset (1p, &args_admin) ;

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO (args_tel) ;
args_tel .phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;

March 2020

80

args_tel.func = userfunc;
args_tel.arg = userarg;
BfvLineOriginateCall (1p, &args_tel) ;

Dials the phone number, monitors call progress, and calls the user
function to optionally decide when to terminate call progress.

BT_ZERO (args_t30) ;
args_t30.bit_rate = BITRATE_14400;
args_t30.scan_time = SCANTIME_O;
BfvFaxT30Params (1p, &args_t30) ;

Configures the channel's maximum transmission rate. This function
is optional.

BT_ZERO (args_page) ;
args_page.top_margin = 0;
args_page.bottom_margin = 0;
args_page.length = 1143;
args_page.ascii_pad = 1;
BfvFaxPageParams (1lp, &args_page) ;

Sets the page parameters: no top or bottom margins, a page length of
1143 (normal) G3 lines, and no padding of short ASCII pages, no
padding of short images, no breaking of images, and no margins for
images.

BT_ZERO (args_fax) ;
args_fax.resolution = RES_200H_100V;
args_fax.width = WIDTH_A4;
BfvFaxBeginSendRaw (lp, &args_fax);

Begins the handshaking procedure and indicates that the first page
is in normal resolution and has A4 width.

BfvFaxGetRemoteInfo (lp, &args_fax);
Waits for the called machine to send its ID and capabilities.

BfvFaxWaitForTraining (lp, &args_fax);

Waits for the completion of the Phase B handshaking procedure.

BT ZERO (args_strip);

args_strip.fmt = FMT MMR_ALIGN_MSB;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams (1lp, &args_strip) ;

Sets the G3 parameters for the G3 document mmrdoc.g3, since the
data format differs from the default (MH).

BT_ZERO (args_fax) ;

args_fax.fname = "mmrdoc.g3";
args_fax.fmt = FMT_MMR_ALIGN_MSB;
BfvFaxSendFile (lp, &args_fax);

March 2020

81

Sends the G3 document data file mmrdoc.g3 stored on disk in MMR
format, to the driver.

BfvFaxEndOfDocument (1p, &args_fax) ;

Indicates to the driver that this page is the last page of the
transmission.

BT_ZERO (args_tel) ;
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO (args_admin) ;
BfvLineDetach (lp, &args_admin) ;

Frees all the memory for the attached line and closes the device.

Accessing an Infopkt Stream from an Application

The function calls BfvFaxSendPage and BfvFaxNextPage are
typically used in a loop. Both read infopkts from the infopkt stream
for processing.

BfvFaxSendPage reads infopkts and processes them in a